A band-pass filter or bandpass filter ( BPF) is a device that passes frequency within a certain range and rejects () frequencies outside that range. It is the inverse of a band-stop filter.
An example of an analog circuit electronic band-pass filter is an RLC circuit (a resistor–inductor–capacitor circuit). These filters can also be created by combining a low-pass filter with a high-pass filter.
A bandpass signal is a signal containing a band of frequencies not adjacent to zero frequency, such as a signal that comes out of a bandpass filter.
An ideal bandpass filter would have a completely flat passband: all frequencies within the passband would be passed to the output without amplification or attenuation, and would completely attenuate all frequencies outside the passband.
In practice, no bandpass filter is ideal. The filter does not attenuate all frequencies outside the desired frequency range completely; in particular, there is a region just outside the intended passband where frequencies are attenuated, but not rejected. This is known as the filter roll-off, and it is usually expressed in decibel of attenuation per octave or decade of frequency. Generally, the design of a filter seeks to make the roll-off as narrow as possible, thus allowing the filter to perform as close as possible to its intended design. Often, this is achieved at the expense of pass-band or stop-band ripple.
The bandwidth of the filter is simply the difference between the upper and lower cutoff frequency. The shape factor is the ratio of bandwidths measured using two different attenuation values to determine the cutoff frequency, e.g., a shape factor of 2:1 at 30/3 dB means the bandwidth measured between frequencies at 30 dB attenuation is twice that measured between frequencies at 3 dB attenuation.
In both transmitting and receiving applications, well-designed bandpass filters, having the optimum bandwidth for the mode and speed of communication being used, maximize the number of signal transmitters that can exist in a system, while minimizing the interference or competition among signals.
Outside of electronics and signal processing, one example of the use of band-pass filters is in the atmospheric sciences. It is common to band-pass filter recent meteorological data with a period range of, for example, 3 to 10 days, so that only remain as fluctuations in the data fields.
If the enclosure on each side of the woofer has a port in it then the enclosure yields a 6th order band-pass response. These are considerably harder to design and tend to be very sensitive to driver characteristics. As in other reflex enclosures, the ports may generally be replaced by passive radiators if desired.
An eighth order bandpass box is another variation which also has a narrow frequency range. They are often used in sound pressure level competitions, in which case a bass tone of a specific frequency would be used versus anything musical. They are complicated to build and must be done quite precisely in order to perform nearly as intended.
Economic data usually has quite different statistical properties than data in say, electrical engineering. It is very common for a researcher to directly carry over traditional methods such as the "ideal" filter, which has a perfectly sharp gain function in the frequency domain. However, in doing so, substantial problems can arise that can cause distortions and make the filter output extremely misleading. As a poignant and simple case, the use of an "ideal" filter on white noise (which could represent for example stock price changes) creates a false cycle. The use of the nomenclature "ideal" implicitly involves a greatly fallacious assumption except on scarce occasions. Nevertheless, the use of the "ideal" filter remains common despite its limitations.
Fortunately, band-pass filters are available that steer clear of such errors, adapt to the data series at hand, and yield more accurate assessments of the business cycle fluctuations in major economic series like Real GDP, Investment, and Consumption - as well as their sub-components. An early work, published in the Review of Economics and Statistics in 2003, more effectively handles the kind of data (stochastic rather than deterministic) arising in macroeconomics. In this paper entitled "General Model-Based Filters for Extracting Trends and Cycles in Economic Time Series", Andrew Harvey and Thomas Trimbur develop a class of adaptive band pass filters. These have been successfully applied in various situations involving business cycle movements in myriad nations in the international economy.
Combine, hairpin, parallel-coupled line, step impedance and stub impedance are the designs of experimenting the band pass filter to achieve low insertion loss with a compact size. The necessity of adopting asymmetric frequency response is in behalf of reducing the number of , insertion loss, size and cost of circuit production.
4-pole cross-coupled band pass filter is designed by Hussaini et al.(2015). This band pass filter is designed to cover the 2.5-2.6 GHz and 3.4-3.7 GHz spectrum for the 4G and 5G wireless communication applications respectively. It is developed and extended from 3-pole single-band band pass filter, where an additional resonator is applied to a 3-pole single-band band pass filter. The advanced band pass filter has a compact size with a simple structure, which is convenient for implementation. Moreover, the Stopband rejection and selectivity present a good performance in Radio noise suppression. Insertion loss is very low when covering the 4G and 5G spectrum, while providing good return loss and group delay.
In astronomy, band-pass filters are used to allow only a single portion of the light spectrum into an instrument. Band-pass filters can help with finding where stars lie on the main sequence, identifying redshifts, and many other applications.
|
|